Markscheme

May 2015

Discrete mathematics

Higher level

Paper 3

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding M marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.

R Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1
 General

Mark according to RM $^{\text {™ }}$ Assessor instructions and the document "Mathematics HL: Guidance for e-marking May 2015". It is essential that you read this document before you start marking. In particular, please note the following:

- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\boldsymbol{A O}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.
- All the marks will be added and recorded by $\mathrm{RM}^{\mathrm{TM}}$ Assessor.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award $\boldsymbol{M O}$ followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M} \mathbf{1}$ for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct $\boldsymbol{F T}$ working shown, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A 1}$ in that part.

Examples

	Correct answer seen	Further working seen	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$ (incorrect decimal value)	Award the final $\boldsymbol{A 1}$ (ignore the further working)
2.	$\frac{1}{4} \sin 4 x$	$\sin x$	Do not award the final $\boldsymbol{A 1}$
3.	$\log a-\log b$	$\log (a-b)$	Do not award the final $\boldsymbol{A 1}$

3 N marks

Award \mathbf{N} marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

4 Implied marks

Implied marks appear in brackets eg (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

5 Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR).
A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an M mark, but award all others so that the candidate only loses one mark.

- If the question becomes much simpler because of the $\boldsymbol{M R}$, then use discretion to award fewer marks.
- If the $\boldsymbol{M R}$ leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).

$7 \quad$ Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

$9 \quad$ Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
f^{\prime}(x)=(2 \cos (5 x-3)) 5(=10 \cos (5 x-3))
$$

Award $\boldsymbol{A} 1$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

10
 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

11 Crossed out work

If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators

A GDC is required for paper 3, but calculators with symbolic manipulation features (for example, TI-89) are not allowed.

Calculator notation

The Mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

1. (a) (i)

Note: Award A1 if one edge is missing. Award A1 if the edge weights are not labelled.
(ii) the edges are added in the order:

FG 1
CE 2
ED 3
EG 4
AC 4
Note: EG and AC can be added in either order.
(Reject EF)
(Reject CD)
EB 5 OR AB 5
A1
Notes: The minimum spanning tree does not have to be seen.
If only a tree is seen, the order by which edges are added must be clearly indicated.
(iii) 19
(b) (i) eg, PQRSRTSTQP OR PQTSTRSRQP

Note: Award M1 if in either (i) or (ii), it is recognised that edge PQ is needed twice.
(ii) total weight $=34$
(c) (i) to determine a cycle where each vertex is visited once only (Hamiltonian cycle)
of least total weight

Question 1 continued

(ii) EITHER

to reach P, Q must be visited twice which contradicts the definition of the TSP

R1
OR
the graph is not a complete graph and hence there is no solution to the TSP

R1
[3 marks]
Total [14 marks]
2. (a)

Note: Award A1 for a correct version of $K_{2,2}$ and A1 for a correct planar representation.
(b)

A1
[1 mark]
(c)

(d) the complete bipartite graph $K_{m, n}$ has two subsets of vertices A and B, such that each element of A is connected to every element of B
in the complement, no element of A is connected to any element of B. The complement is not a connected graph
by definition a tree is connected R1
hence the complement of any complete bipartite graph does not possess a spanning tree
3. (a) METHOD 1
attempting to find a solution in the form $u_{n}=A 7^{n}+B$

EITHER

$e g, u_{0}=5 \Rightarrow 5=A+B$ and $u_{1}=29 \Rightarrow 29=7 A+B$
OR
$A 7^{n+1}+B=A 7^{n+1}+7 B-6$ (or equivalent)

THEN

attempting to solve for A and B
$u_{n}=4 \times 7^{n}+1$
Note: Accept $A=4, B=1$ provided the first $\boldsymbol{M} \mathbf{1}$ is awarded.

METHOD 2

attempting an iterative method eg, $u_{1}=7(5)-6$ and

$$
\begin{align*}
& u_{2}=7^{2}(5)-6(7+1)(\text { etc }) \tag{M1}\\
& u_{n}=5 \times 7^{n}-6\left(\frac{7^{n}-1}{7-1}\right)
\end{align*}
$$

Note: Award M1 for attempting to express u_{n} in terms of n.

$$
\begin{equation*}
u_{n}=4 \times 7^{n}+1 \tag{A1A1}
\end{equation*}
$$

METHOD 3

attempting to find a solution in the form $u_{n}=A 7^{n}+B$ M1
$A(n+1)+B=7(A n+B)-6$
$7 B-6=B$
attempting to solve for A
$u_{n}=4 \times 7^{n}+1$

Question 3 continued

METHOD 4

```
\(u_{n+1}-7 u_{n}+6-\left(u_{n}-7 u_{n-1}+6\right)=0 \Rightarrow u_{n+1}-8 u_{n}+7 u_{n-1}=0\)
\(r^{2}-8 r+7=0\)
\(r=1,7\)
```

attempting to find a solution in the form $u_{n}=A 7^{n}+B$

EITHER

$e g, u_{0}=5 \Rightarrow 5=A+B$ and $u_{1}=29 \Rightarrow 29=7 A+B$
OR
$A 7^{n+1}+B=A 7^{n+1}+7 B-6$ (or equivalent)

THEN

attempting to solve for A and B
$u_{n}=4 \times 7^{n}+1$
(b) attempting to find the auxiliary equation M1
$r^{2}-10 r-11=0 \quad((r-11)(r+1)=0) \quad$ A1
$r=11, r=-1 \quad$ A1
$v_{n}=A 11^{n}+B(-1)^{n} \quad$ (M1)
attempting to use the initial conditions M1
$A+B=4,11 A-B=44 \quad$ A1
$v_{n}=4 \times 11^{n} \quad$ A1
(c) $\quad v_{n}-u_{n}=4\left(11^{n}-7^{n}\right)-1$

EITHER

$$
=4(11-7)\left(11^{n-1}+\ldots+7^{n-1}\right)-1
$$

OR
$=4\left((7+4)^{n}-7^{n}\right)-1$
subtracting the 7^{n} from the expanded first bracket
THEN
obtaining 16 times a whole number -1
$v_{n}-u_{n} \equiv 15(\bmod 16), n \in \mathbb{N}$
4. (a) (i) METHOD 1
attempting to use $f=e-v+2$ and $e \leq 3 v-6$ (if $v>2$)
$2 e \leq 6 v-12=6(e-f+2)-12 \quad$ M1A1
leading to $2 e \geq 3 f \quad$ AG
METHOD 2
each face is bounded by at least three edges
Note: Award A1 for stating $e \geq 3 f$.
each edge either separates two faces or, if an edge is interior to a face, it gets counted twice

Note: Award R1 for stating that each edge contributes two to the sum of the degrees of the faces (or equivalent) ie, $\sum \operatorname{deg}(F)=2 e$.
adding up the edges around each face R1
leading to $2 e \geq 3 f$ AG
(ii) K_{5} has $e=10 \quad$ A1
if the graph is planar, $f=7 \quad$ A1
this contradicts the inequality obtained above R1
hence the graph is non-planar AG
[6 marks]
(b) (i) the sum of the vertex degrees $=2 e$ (or is even) or equivalent
(ii) if each vertex has degree 2, then $2 v=2 e$

A1
substituting $v=e$ into Euler's formula M1
$f=2$

A1
[4 marks]
(c) for example,

5. (a) every positive integer, greater than 1, is either prime or can be expressed uniquely as a product of primes

Note: Award A1 for "product of primes" and $\boldsymbol{A} 1$ for "uniquely".
(b) $5577=3 \times 11 \times 13^{2}$ and $99099=3^{2} \times 7 \times 11^{2} \times 13$
$\operatorname{gcd}(5577,99099)=3 \times 11 \times 13, \operatorname{lcm}(5577,99099)=3^{2} \times 7 \times 11^{2} \times 13^{2}$
M1
A1A1
[3 marks]
(c) METHOD 1
$n=p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{r}^{k_{r}}$ and $m=p_{1}^{j_{1}} p_{2}^{j_{2}} \ldots p_{r}^{j_{r}}$
employing all the prime factors of n and m, and inserting zero exponents if necessary
define $g_{i}=\min \left(k_{i}, j_{i}\right)$ and $h_{i}=\max \left(k_{i}, j_{i}\right)$ for $i=1 \ldots r$
$\operatorname{gcd}(n, m)=p_{1}^{g_{1}} p_{2}^{g_{2}} \ldots p_{r}^{g_{r}}$ and $\operatorname{lcm}(n, m)=p_{1}^{h_{1}} p_{2}^{k_{2}} \ldots p_{r}^{h_{r}}$
A1A1
noting that $g_{i}+h_{i}=k_{i}+j_{i}$ for $i=1 \ldots r$
R1
$\operatorname{gcd}(n, m) \times 1 \mathrm{~cm}(n, m)=n \times m$ for all $n, m \in \mathbb{Z}^{+}$
AG

METHOD 2

let m and n be expressed as a product of primes where $m=a b$ and $n=a c$
a denotes the factors that are common and b, c are the disjoint factors that are not common
$\operatorname{gcd}(n, m)=a$
A1
$\operatorname{lcm}(n, m)=\operatorname{gcd}(n, m) b c \quad \boldsymbol{A 1}$
$\operatorname{gcd}(n, m) \times \operatorname{lcm}(n, m)=a \times(a b c) \quad$ M1
$=a b \times a c$ and $m=a b$ and $n=a c$ so R1
$\operatorname{gcd}(n, m) \times \operatorname{lcm}(n, m)=n \times m$ for all $n, m \in \mathbb{Z}^{+} \quad$ AG
[6 marks]
Total [11 marks]

